Pop up my Cbox

sexta-feira, 26 de agosto de 2011

Cosmologia


Cosmologia é o ramo da astronomia que estuda a origem, estrutura e evolução do Universo a partir da aplicação de métodos científicos.
A Cosmologia muitas vezes é confundida com a Astrofísica que é o ramo da Astronomia que estuda a estrutura e as propriedades dos objetos celestes e o universo como um todo através da Física teórica. A confusão ocorre porque ambas ciências sob alguns aspectos seguem caminhos paralelos, e muitas vezes considerados redundantes, embora não o sejam


A cosmologia experimental

A partir do início do século XX, com a criação da teoria da relatividade surgiu também a cosmologia moderna, cujo artigo inicial foi escrito pelo físico alemão Albert Einstein, em 1917, com o título "Kosmologische Betrachtungen Zur Allgemeinen Relativitätstheorie" (Considerações cosmológicas sobre a teoria da relatividade geral). Nesse trabalho, Einstein analisava, sob a luz da relatividade, o universo como um todo, introduzindo o conceito de constante cosmológica. Essa constante cosmológica faria o papel de uma 'força antigravidade', que impediria o universo de colapsar sob a ação da gravidade, permitindo assim a existência de soluções - ou modelos - cosmológicos estáticos.
No entanto, o que Einstein não percebeu (ou não quis perceber) de imediato é que, mesmo com a presença da constante cosmológica era possível obter soluções matemáticas que previam um universo dinâmico, em contração ou expansão. Tais famílias de soluções são hoje conhecidas genericamente como soluções de Friedmann, em homenagem ao matemático russo Alexander Friedmann, que as obteve em 1922.
Com o desenvolvimento de novos telescópios, ainda no início do século XX, foi possível estudar o universo em escalas então inexploradas. Um pioneiro no estudo sistemático das galáxias além da nossa Via Láctea foi o americano Edwin Hubble, que notou que a maioria das galáxias parecia estar se afastando da nossa, e que a velocidade de afastamento aumentava com a distância da galáxia em relação à nossa. Tal observação, confirmada posteriormente, tornou-se uma lei empírica, conhecida hoje como lei de Hubble, e era uma 'prova' experimental da expansão do universo: as galáxias se afastam umas das outras devido à expansão do espaço entre elas.

O Universo em expansão



Radiação de Fundo resultante do Big Bang e os telescópios utilizados para medi-la.

Em 1917 o astrônomo Holandês Willem de Sitter desenvolveu um modelo não estático do Universo. A teoria segundo a qual o universo está em expansão, formulada na década de 1920, acabou por constituir a moderna base da cosmologia. Em 1922 o modelo do universo em expansão foi adotado pelo matemático russo Alexander Friedmann.
Em 1927 o físico e sacerdote belga Georges Lemaître introduziu a ideia do núcleo primordial. A teoria afirmava que as galáxias são fragmentos da explosão desse núcleo, resultando na consequente expansão do Universo. Esse foi o começo da teoria da Grande Explosão que tenta explicar a origem do Cosmos. Na época, entretanto, a comunidade científica não levou essa proposta a sério por ser considerada sem fundamento físico e baseada numa concepção religiosa (cristã) de universo.

Em 1929, o astrônomo estadunidense Edwin Hubble publicou um trabalho científico no qual mostrava que as demais galáxias do universo (na época chamadas de nebulosas) estavam, em média, se distanciando de nós, e com uma velocidade proporcional à distância de nós até elas. Essa velocidade radial, igual em todas as direções, indicava que o universo estava, de fato, em expansão. Em 1948, o físico russo George Gamow mostrou que a teoria de universo em expansão poderia explicar as elevadas abundâncias dos elementos químicos hidrogênio e hélio no universo (cerca de 75% da matéria visível no universo é constituída de hidrogênio e 25% de hélio. Os demais elementos contribuem com menos de 1% no total): no início do universo, a alta densidade e temperatura propiciavam a fusão nuclear. Entretanto, a expansão do universo levou ao seu esfriamento e consequente término dessas reações, de forma que apenas os elementos químicos leves (de baixo número atômico) foram formados. Gamow previu também, baseado nesse modelo, a existência de uma radiação isotrópica e de espectro bem definido que teria se originado há bilhões de anos atrás, numa época próxima ao início do universo.

Em 1965, essa radiação cósmica de fundo foi observada, por acidente, por Arno Penzias e Robert Woodrow Wilson. Diversas observações científicas foram então realizadas para se certificar de sua existência e das características que comprovariam sua origem há bilhões de anos atrás. Uma das observações mais famosas foi realizada pelo satélite COBE, lançado em 1989. Ele confirmou a isotropia da radiação cósmica de fundo, sua baixa temperatura (de 2,725 K) e seu espectro de corpo negro, características básicas da radiação prevista por Gamow e fruto do universo em expansão. Essas observações, aliadas às sobre a velocidade radial das galáxias e a composição do universo deram suporte para a teoria do universo em expansão, atualmente amplamente aceita pela comunidade científica.

Novos constituintes do universo

Além da questão da expansão do universo, começaram a surgir, a partir de 1933, observações astronômicas que indicavam que a quantidade de matéria visível em galáxias era bem menor que a quantidade de matéria necessária para gerar os efeitos gravitacionais observados. Em 1978, por exemplo, Sandra Faber publicou um trabalho no qual mostra que a velocidade de rotação de galáxias espirais corresponde a uma concentração de massa maior do que a inferida por observações da luz emitida pela galáxia. Esse problema ficou conhecido como problema da massa faltante. O acúmulo de observações de naturezas variadas que indicavam a existência dessa matéria invisível afastou a possibilidade das teorias de gravitação estarem erradas e reforçou a possibilidade de existência de um tipo de matéria desconhecido que não participa das interações fortes nem das eletromagnéticas. A essa matéria foi dada o nome de matéria escura. Observações atuais indicam que, de toda a matéria existente no universo, cerca de 90% deve ser matéria escura. A matéria atualmente conhecida pela física compõem cerca de 10% da matéria do universo.
Em 1998, observações da magnitude aparente e do desvio para o vermelho de supernovas começaram a indicar que o universo não só está em expansão como está em expansão acelerada, ou seja: sua expansão está sendo cada vez mais rápida. Como forma de explicar essa aceleração, os cientistas tem como hipótese a existência de um outro tipo de matéria desconhecida chamada energia escura, que poderia atuar como uma "força antigravidade". O efeito de aceleração da expansão do universo também pode ser explicado com a introdução da constante cosmológica proposta por Albert Einstein muitos anos antes. Observações atuais das anisotropias da radiação cósmica de fundo (realizadas pelo satélite WMAP, por exemplo), indicam que aproximadamente 74% da densidade atual do universo é composta pela energia escura, 22% por matéria escura e apenas 4% pela matéria conhecida, composta por bárions e léptons.
Acredita-se na energia total zero do Universo, quando se inclui no computo a energia negativa do campo gravitacional. M.S.Berman também afirma que a densidade total de energia do Universo, quando computada a densidade negativa do campo gravitacional, é zero, o que mostra que não é infinita essa densidade no instante inicial, resolvendo assim o problema da singularidade inicial.

Modelo cosmológico padrão

Atualmente, acredita-se que o universo possua uma idade de aproximadamente 14 bilhões de anos, que esteja em expansão acelerada e que seja aproximadamente homogêneo (nenhuma posição no espaço é diferente das demais) e isotrópico (suas características são as mesmas em qualquer direção) em grandes escalas. Isso significa que, embora existam grandes aglomerações de matéria em estrelas, galáxias e grupos de galáxias (objetos pequenos quando comparados com o tamanho do universo), se calcularmos a densidade média em volumes bem maiores que os ocupados por um desses objetos, ela não deve variar muito de uma região do espaço à outra. Acredita-se que, no passado, o universo tenha sido ainda mais homogêneo que hoje, e que as grandes inomogeneidades observadas hoje (galáxias, por exemplo) surgiram de pequenas diferenças que cresceram, ao longo do tempo, por colapso gravitacional.
Também se acredita, baseado principalmente nas observações da radiação cósmica de fundo feitas pelo satélite WMAP, que o universo possua uma geometria plana, em contraposição à geometria em espaços curvos proposta por Bernhard Riemann, com base na geometria diferencial. De maneira simples, isso significa que dois raios de luz paralelos devem continuar para sempre paralelos. Em espaços curvos do tipo fechado, por exemplo, esses raios irão convergir, enquanto que em espaços curvos abertos, eles irão divergir.
Quanto à sua composição, dados provenientes da observação da radiação cósmica de fundo, de supernovas, da abundância de elementos químicos e da quantidade de estruturas em grandes escalas, principalmente, indicam que 74% do universo é composto por um tipo exótico de matéria chamado de energia escura, 22% por outro tipo de matéria desconhecida chamada matéria escura e 4% por matéria ordinária, na forma de gás, poeira, estrelas e outros corpos celestes e seus agrupamentos (como as galáxias).

O futuro da cosmologia


Nebulosa Olho de Gato.

A cosmologia associada a outros ramos de pesquisa, como a informática e eletrônica, está cada vez mais aumentando seu nível de complexidade.
Com o advento do avanço das ciências de computação e a união de engenharias das mais diversas, existem estudos para a construção de um supercomputador interligado a outros espalhados pelo planeta onde se possa construir um universo virtual e se observar sua dinâmica.
Muitas Universidades no mundo estão empenhadas no projeto do Universo virtual que poderá ser o grande passo para a pesquisa cosmológica do século XXI.
Em abril de 2011, utilizando uma incerteza de Heisenberg persistente, relacionada à posição primordial de uma origem comóvel, um físico brasileiro publicou uma solução para as equações de campo de Einstein, dentro do contexto cosmológico, fornecendo uma temperatura de zero absoluto para o universo primordial: "On the Cold Big bang Cosmology". Recentemente, o mesmo autor publicou uma demonstração em que a incerteza de Heisenberg persistente que levara a uma temperatura de zero absoluto para o universo primordial advém de um critério de quantização para a energia



Nenhum comentário:

Postar um comentário