Pop up my Cbox

terça-feira, 21 de junho de 2011

Magnetares e Quasares




Magnetar é uma estrela de nêutrons com alto valor de campo magnético. Possui campo magnético estimado em 1 bilhão de teslas. Tem como característica principal a alta emissão de raios X e raios gama.
Considera-se o magnetar um tipo especial de estrela de nêutrons (EN). As ENs são esferas compactas de cerca de 15 quilômetros de diâmetro, correspondendo ao núcleo do que resta do colapso de uma estrela com cerca de dez vezes a massa do Sol. Os magnetares, por razões que ainda não completamente esclarecidas, têm campos magnéticos mil vezes mais fortes do que as ENs normais.

No entanto, existe certa controvérsia a respeito de que as estrela de nêutrons podem ser tão magnéticas. Assim, os candidatos a magnetares são frequentemente referidos na literatura científica como Repetidores de Raios Gama (SGR) ou Pulsares de Raios-X Anômalos (AXP), dependendo das características das suas erupções. Em 2002, os membros desta equipe de observação ajudaram a estabelecer a ligação entre SGRs e AXPs. A fonte 1E 2259+586 é por vezes chamada um AXP.

Apesar de toda a sua energia, os magnetares não são sempre objectos brilhantes. A oportunidade de os estudar acontece quando surgem, sem aviso, erupções que podem durar desde horas a meses, e que emitem luz visível e noutros comprimentos de onda. O magnetar 1E 2259+586 acendeu-se repentinamente em Junho de 2002. Foram obtidos dados de cerca de 80 erupções ocorridas num intervalo de 4 horas. Desde então, nenhuma outra erupção foi detectada. As mesmas variações de emissões aconteceram há 12 anos e permaneceram um mistério até este estudo.

As propriedades da erupção de 1E 2259+586 levaram a uma série de conclusões: primeiro, a estrela passou por algum acontecimento importante que durou vários dias e teve duas componentes, uma na superfície da estrela (possivelmente uma fractura na crosta) e outra debaixo da superfície. As mudanças nas emissões sugerem que a estrela sofreu uma deformação plástica da crosta que impactou simultaneamente com o interior superfluido e com a magnetosfera (pensa-se que o interior de uma estrela de neutrões é constituído por um superfluido de neutrões; a magnetosfera é a região em que o campo magnético da estrela de neutrões controla o comportamento das partículas carregadas.).
Após a erupção, a emissão era semelhante à de uma SGR, tornando ainda mais difícil a distinção entre as duas espécies exóticas. Por outro lado, o estudo das variações das emissões permitiram inferir episódios eruptivos anteriores neste e noutros candidatos a magnetares.
Este tipo de fenómeno pode estar a acontecer constantemente noutras fontes espalhadas pela Galáxia e nunca o saberíamos porque os nossos "olhos" de raios gama não são suficientemente sensíveis. A equipe planeja agora determinar o número de magnetares, incluindo os que se encontram na fase tênue.

Os magnetares não são apenas as estrelas mais magnéticas que se conhece. Representam uma nova maneira de fazer uma estrela brilhar, pois não são alimentados por um mecanismo convencional como a fusão nuclear, a rotação ou a acreção, o que torna-os num objeto de estudo fascinante.

Formação

Quando, em uma supernova, a estrela colapsa para uma estrela de nêutrons, o seu campo magnético aumenta dramaticamente (metade da dimensão linear aumenta o campo magnético em quatro vezes). Duncan e Thompson calcularam que o campo magnético de uma estrela de nêutrons normalmente já é alto (cerca de 108 teslas) e, através do mecanismo de dínamo, pode crescer ainda mais (para mais de 1011 teslas, ou 1015 Gauss). O resultado é um magnetar.

A supernova pode perder 10% da sua massa em uma explosão. Para que essas grandes estrelas (10 a 30 massas solares) não colapsem para um buraco negro, eles têm de lançar uma maior proporção de sua massa, talvez mais de 80%.
Estima-se que cerca de 1 em 10 explosões de supernovas tem uma magnetar como resultados.
Em 21 de fevereiro de 2008 foi anunciado que a NASA e a Universidade McGill pesquisadores haviam descoberto uma estrela de neutrôns que havia sido temporariamente alterada a partir de um pulsar de um magnetar. Isto indica que magnetars não são apenas um tipo raro de pulsares, mas pode ser um (possivelmente reversível) fase na vida de pelo menos alguns pulsares.
Em 24 de setembro de 2008, foi anunciado o que se acredita ser a primeira magnetar utilizando o Very Large Telescope (VLT), do European Southern Observatory (ESO). A recém-descoberta é conhecida como objeto SWIFT J195509 261406.

Quasares

Um quasar (abreviação de quasi-stellar radio source, ou fonte de rádio quase-estelar) é um objeto astronômico distante e poderosamente energético com um núcleo galáctico ativo, de tamanho maior que o de uma estrela, porém menor do que o mínimo para ser considerado uma galáxia. Quasares foram primeiramente identificados como fontes de energia eletromagnética (incluindo ondas de rádio e luz visível) com alto desvio para o vermelho (redshift), que eram puntiformes e semelhantes a estrelas, em vez de fontes extensas semelhantes a galáxias. Os quasares são os maiores emissores de energia do Universo. Um único quasar emite entre 100 e 1000 vezes mais luz que uma galáxia inteira com cem bilhões de estrelas.
Não se encontram quasares em nossa galáxia. Existem evidências de que os quasares se afastam da Via Láctea e que podem expelir parte de sua massa em jatos (formados por partículas de alta energia) de velocidade próxima a da luz. Só foi possível perceber sua existência porque eles emitem ondas de rádio captáveis por nossos radiotelescópios. As imagens que são mostradas não são digitais e sim apenas uma representação dedutiva de seu molde.
Enquanto houve inicialmente alguma controvérsia quanto à natureza destes objetos — até tão recentemente quanto os anos 1980, não havia um consenso sobre isto — há agora um consenso científico de que um quasar é uma região compacta com 10 a 10,000 vezes o raio de Schwarzschild do buraco negro supermassivo de uma galáxia, energizada pelo seu disco de acreção.

No ano de 1999, Edwin Ernest Salpeter e Yakov Borisovich Zel'dovich lançaram a teoria de que os quasares não são na verdade galáxias activas, mas apenas objetos associados a galáxias ativas. Embora esta teoria seja a mais aceita, já foram encontrados quasares dispersos, isto é, sem galáxias próximas - sugerindo que a relação entre os quasares e as galáxias não seja obrigatória e que os quasares e as galáxias não sejam um único objeto.

Propriedades

Aparentemente, os quasares são semelhantes às estrelas, mas sua estrutura real é semelhante à de uma galáxia activa e sua massa é ligeiramente maior do que a de qualquer outro corpo celeste já catalogado.
Os quasares são fortes emissores de ondas de rádio e colossais emissores de luz. Tais características, combinadas, indicam que os quasares possuem grande quantidade de partículas de altíssima energia. Outro aspecto interessante é que muitos quasares liberam imensos jatos de partículas radioativas. O quasar 3C 273 é o quasar mais brilhante já observado, e está a aproximadamente dois bilhões de anos-luz da Terra.
A maioria dos quasares já observados possui um forte desvio para o vermelho no espectro, indicando que estão se movimentando muito rapidamente, provavelmente a uma velocidade superior a 50 mil km/s, o que, pela Lei de Hubble, leva a entender que estão muito distantes. Outra conclusão devida é que se formam num período muito recente da considerada formação do universo.
Como todos os quasares observados estão à distâncias muito longínquas de nossa galáxia (bilhões de anos-luz), estima-se que não existam mais em nosso universo atual, uma vez que as emissões detectadas provenientes deles levaram muitos bilhões de anos para chegar à terra.
Acredita-se que os quasares eram buracos negros gigantes presentes no centro de galáxias ativas, e podemos suspeitar até que os buracos negros mais próximos, presentes no centro das galáxias mais próximas, podem ter sido quasares no passado.

Formação

Um quasar inicia sua vida como uma estrela comum, não como o sol, mas como uma estrela gigantesca que é alimentada por fusões nucleares constantes causadas pela gravidade. No início da vida estelar, a intensa pressão e força gravitacional comprimem tanto os átomos de hidrogênio, e criam uma movimentação entre eles que supera a força natural de repulsão, e os fundem em hélio e nessa fusão parte da energia que formam as partículas subatômicas é liberada através da estrela e se equilibra com a gravidade. Conforme acabam os átomos de hidrogênio, a estrela funde hélio em carbono, e com o fim do hélio o carbono é fundido em elementos mais pesados como oxigênio, neônio, silício, magnésio, enxofre e ferro. Quando os átomos de ferro se fundem, absorvem a energia da fusão e começam a diminuir drasticamente a pressão da estrela. Nessa alteração de elementos fundidos na estrela, ela havia se aquecido e se expandido.
No desequilíbrio entre as forças que comandam a estrela a gravidade vence e a estrela desaba sobre si mesmo numa explosão descomunal conhecida como supernova.

Nesta explosão que poderia ser vista a luz do dia durante dias, em um breve momento, é criado o famoso buraco negro ou uma estrela de nêutrons. O que forma quasar é o buraco negro cuja gravidade é tão grande que nem a luz pode escapar (a estrela de nêutrons, se fundida a outra, forma um buraco negro e também pode formar um quasar).
Muito provavelmente, essas estrelas não estavam sozinhas e com sua nova forma engolem a matéria que as rodeavam. Quando elas se alimentam dessa matéria, antes de ser engolida a matéria forma um disco de acreção que gira quase a velocidade da luz e gera um imenso atrito. Nesse atrito muita energia é liberada, e conduzida pelo campo magnético do buraco negro forma dois jatos de cada lado que são chamados de lóbulos de rádio ou DRAGNs. E assim podemos detectá-los.
Durante sua vida de milhares ou até bilhões de anos, o buraco negro engole muitas estrelas ou até outros buracos negros menores e aumenta de massa e tamanho até ficarem tão grandes que são chamados de buracos negros supermassivos. Os que habitam os centros dos quasares são tão grandes que são denominados monstros, literalmente.
Acabam tendo tanta matéria atraída que formam discos de acreção colossais e lóbulos de raio tão grande que se o buraco fosse comparado a uma bola de basquete, os lóbulos equivaleriam ao diâmetro da terra. E aí estão os quasares, que geralmente habitam os centros galácticos. A maioria está tão distantes que os vemos como eram a milhares de anos atrás do ponto de partida da luz que nos alcança hoje



Foto de um Quasar



Blazar


O blazar é um corpo celeste que apresenta uma fonte de energia muito compacta e altamente variável associada a um buraco negro supermassivo do centro de uma galáxia ativa. O blazar sofre um dos fenômenos mais violentos do universo e é um dos tópicos mais importantes em astronomia extragaláctica.
Os blazares são membros de um grupo maior de galáxias ativas conhecidas como galáxias de núcleo activo (AGN em inglês). Entretanto, os blazares não são um grupo homogêneo e portanto estão divididos em grupos menores dos quais destacam-se os OVVs e os objetos BL Lacertae.

Nenhum comentário:

Postar um comentário