Pop up my Cbox

terça-feira, 21 de junho de 2011

Estrelas Anãs Brancas e Anãs Negras


Em astronomia, anã branca é o objeto celeste resultante do processo evolutivo de estrelas de até 10 M Sol, o que significa dizer que cerca de 98% de todas as estrelas evoluirão até a fase de anã branca, entretanto, somente 6% dos objetos nas vizinhanças do Sol são anãs brancas.

Estrelas com até 10 MSol não são massivas o suficiente para que a temperatura em seu núcleo seja suficientemente alta para que possam fundir carbono em reações de nucleossíntese. Após terem se tornado gigantes vermelhas durante a fase de queima nuclear de Hélio/Hidrogênio, elas ejetarão sua camada externa, formando uma nebulosa planetária e deixando para trás um núcleo composto praticamente de carbono e oxigênio.

Embora este núcleo seja mil vezes mais luminoso que o Sol e com uma temperatura efetiva que pode chegar a 150 000 K, ele não tem uma fonte de energia adicional e irá gradualmente irradiar sua energia e esfriar. O núcleo, sem o suporte contra o colapso gravitacional oferecido pelas reações de fusão termonucleares, torna-se extremamente denso, com uma massa típica de 0,6 MSol contida em um volume comparável ao da Terra.

O colapso gravitacional da anã branca é barrado apenas pela pressão de degenerescência eletrônica. A maior massa de uma anã branca, além da qual a pressão da matéria degenerada não pode mais suporta-la, é em torno de 1,4 MSol. Uma anã branca com massa maior do que este limite (conhecido como limite de Chandrasekhar ) pode explodir em uma supernova.
À medida que esfriam, as anãs brancas passam pelas chamadas faixas de instabilidade do diagrama HR, quando começam a pulsar, tornando-se anãs brancas pulsantes.

Como as anãs brancas esfriam vagarosamente, seriam necessários centenas de bilhões de anos para que uma anã branca esfriasse o suficiente para deixar de ser visível, se transformando em anãs negras. Como a idade do universo é atualmente estimada em 13,7 bilhões de anos, elas ainda não tiveram tempo suficiente para esfriar a ponto de deixarem de ser visíveis. Mesmo as anãs brancas mais velhas do disco de nossa galáxia ainda estão visíveis, com luminosidades acima de 3x10-5 LSol e temperaturas superficiais efetivas da ordem de 3700 K.


Todas as estrelas com até 10 MSol terminarão como anãs brancas, depois de todo o hidrogênio que elas possuem ter sido queimado em hélio. Próximo do fim deste estágio de queima nuclear, essas estrelas passam por uma fase de gigante vermelha e então ejetam a maior parte de suas camadas superficiais, criando uma nebulosa planetária envolta do núcleo quente (T > 100 000 K), o qual irá se transformar em uma jovem anã branca que brilha por causa de seu calor residual.

Uma anã branca típica tem cerca de 0,6 massas solares, com um tamanho algumas vezes maior que a Terra, o que faz das anãs brancas uma das formas mais densas de matéria (em média 109 kg/cm3; em alguns casos, pode chegar a 10.000 kg/cm3!), superadas apenas pelas estrelas de nêutrons, buracos negros, e pelas hipotéticas estrelas de quarks. Quanto maior a massa de uma anã branca, menor seu tamanho. Existe um limite máximo para a massa de uma anã branca, o limite de Chandrasekhar (cerca de 1,4 vezes a massa do Sol). Se esse limite é excedido, a pressão exercida pelos elétrons deixa de ser suficiente para contrabalançar a força gravitacional, e a estrela colapsa para uma estrela de nêutrons. As anãs brancas de carbono/oxigênio evitam esta fatalidade através de uma reação de fusão nuclear que leva a uma explosão de supernova de tipo Ia, antes de atingir o limite de massa.
Apesar deste limite, a maioria das estrelas termina suas vidas como anãs brancas, desde que elas tendem a ejectar mais massa no espaço antes do colapso final, frequentemente gerando uma espetacular nebulosa planetária. É por causa disso que mesmo estrelas mais massivas, com 8 MSol terminarão como anãs brancas, esfriando gradualmente até tornarem-se anãs negras.

Características

Muitas anãs brancas são aproximadamente do tamanho da Terra, tipicamente 100 vezes menor que o diâmetro do Sol; sua massa média está entre 0,5-0,6 massas solares, apesar de existir uma pequena variação. Seu estado condensado implica que a mesma quantidade de matéria está compactada em um volume tipicamente 1 milhão de vezes menor que o do Sol, o que faz com que sua densidade média seja 1 milhão de vezes maior que a densidade média do Sol. Nestas condições, a matéria está em um estado degenerado.
A matéria degenerada comporta-se de um modo levemente contra-intuitivo; por exemplo, quanto maior é a massa de uma anã branca, menor ela será e maior será sua densidade. Nos anos de 1930, isto foi explicado através da mecânica quântica: o peso de uma anã branca é suportado pela pressão de degenerescência eletrônica, o qual depende da densidade e não da temperatura. O modelo do gás de Fermi nos ajuda a compreender melhor este efeito.
Se, para todas as estrelas observadas, for feito um diagrama do brilho (absoluto) contra a cor (diagrama de Hertzprung-Russel ou diagrama HR), nem todas as combinações de brilho e cor ocorrem. Poucas estrelas estão na região baixo-brilho-cor-quente (as anãs brancas), mas a maioria das estrelas seguem uma faixa, chamada sequência principal. Estrelas de baixa massa da sequência principal são pequenas e frias. Elas são avermelhadas e são chamadas de anãs vermelhas ou (ainda mais frias), anãs marrons. Essas pertencem a uma classe de corpos celestes inteiramente diferente da classe das anãs brancas. Nas anãs vermelhas, como em todas as estrelas da sequência principal, a pressão que contrabalança a força gravitacional é causada pelo movimento térmico do gás. A pressão obedece à lei dos gases ideais. Uma outra classe de estrelas é chamada de gigantes: estrelas na região de alto brilho no diagrama HR. São estrelas infladas pela pressão de radiação e são muito grandes.

História das descobertas

A primeira anã branca descoberta foi a companheira da estrela Sírius (α Canis Majoris), a estrela mais brilhante do céu. Em 1844, Friedrich Wilhelm Bessel (1784-1846) analisando perturbações no movimento próprio de Sírius, concluiu que Sírius possuiria uma companheira que não podia ser observada com seu telescópio, mas com a qual formaria um sistema binário. Bessel estimou que o período orbital do sistema seria da ordem de 100 anos. Somente em 31 de janeiro de 1862, Alvan Graham Clark Jr. (1832-1897), enquanto testava um novo telescópio refrator de 37 cm de diâmetro, descobriu uma estrela próxima de Sírius, uma estrela fraca de magnitude 8, que até então nunca havia sido observada. Era a companheira de Sírius, cuja existência Bessel havia predicto. A companheira de Sírius passou a ser chamada de Sírius B (enquanto Sírius passou a ser chamadada e Sírius A).


Em 1914, o americano (nascido na Síria) Walter Sydney Adams (1876-1956), analisou o espectro de Sírius B e descobriu que sua baixa luminosidade e sua alta temperatura efetiva indicavam um raio de 18 000 km, ou seja, duas vezes e meia o raio da Terra, mas tendo a mesma massa do Sol. Sua densidade média era altíssima: 150 000 vezes a densidade da água. Era o objeto mais denso conhecido até então. Por causa de seu pequeno tamanho e da cor branca de sua luz, esta estranha estrela foi chamada de anã branca.
Até 1917 outras duas estrelas com as mesmas características de Sírius B foram descobertas: 40 Eridani B e van Maanen 2, esta última descoberta por Adriaan van Maanen (1884-1946), sugerindo a existência de uma classe de objetos que passou a ser chamada de anãs brancas.
A alta densidade da matéria condensada que formava as anãs brancas permaneceu como um desafio para a Física moderna até que em 1939, Subrahmanyan Chandrasekhar (1910-1995) desenvolveu uma teoria rigorosa descrevendo a estrutura dessas estrela. Chandrasekhar propôs que a pressão que suporta tão altas densidades é a pressão de degenerescência eletrônica decorrente do princípio de exclusão de Pauli, segundo o qual dois elétrons de mesmo spin não podem ocupar o mesmo nível de energia. O elétrons têm momenta e energia cinéticas tão altos (muito maiores do que indicaria sua energia térmica) e contrabalançam o colapso gravitacional. Por esta razão, anãs brancas (e estrelas de nêutrons também) são chamados de objetos degenerados. Atualmente, mais de 10000 anãs brancas são conhecidas.


Anã negra

Uma estrela anã negra é um objeto astronômico hipotético: uma anã branca tão velha que esfriou o suficiente para não mais emitir luz. Para a idade do universo estimada atualmente em 13,7 bilhões de anos, não se espera que nenhuma anã branca tenha tido tempo suficiente para esfriar a tal ponto.

Evolução

Uma estrela anã branca é o que sobra de uma estrela de 8 a 10 massas solares depois de ter queimado todo o seu hidrogênio e hélio em elementos mais pesados como carbono, oxigênio, e nitrogênio, não podendo levar adiante qualquer fusão nuclear de seus sub-produtos. Ela então começa a esfriar com a emissão de radiação térmica.
Mesmo se estrelas anãs negras existissem, elas seriam extremamente difíceis de serem detectadas, desde que, por definição, elas emitiriam pouquíssima radiação, pois sua temperatura superficial estaria não muito acima da temperatura da radiação de fundo do universo (~ 3 K). Seriam apenas detectáveis indiretamente, através de sua influência gravitacional sobre objetos próximos.
Ambas, as anãs negras e as anãs brancas, são estrelas degeneradas.

Anãs negras não devem ser confundidas com anãs marrons, as quais são formadas quando uma nuvem de gás contrai para formar uma estrela, mas não possui massa suficiente para iniciar e manter o processo de fusão nuclear do hidrogênio. "Anãs marrons" chegaram a ser chamadas algumas vezes de "anãs negras" nos anos de 1960. Tão pouco, deve-se confundir anãs negras com buracos negros ou estrelas de nêutrons, apesar de ambos serem resultado do processo de esfriamento de estrelas, porém mais massivas que 10 massas solares.


Ao fim de sua vida uma estrela do tipo anã vermelha também se torna uma anã negra 

Nenhum comentário:

Postar um comentário