Pop up my Cbox

domingo, 29 de maio de 2011

Luas de Júpiter ( As mais conhecidas )


Satélites galileanos, em uma imagem composta comparando-os em tamanho, em conjunto com Júpiter. De cima para baixo: Calisto, Ganimedes, Europa e Io.Os satélites galileanos estão entre os maiores do Sistema Solar - Ganimedes se destaca por ser o maior, tendo um diâmetro maior a que o planeta Mercúrio. Io destaca-se por ser um dos poucos corpos solares a possuir atividade vulcânica, e cogita-se a possibilidade de oceanos líquidos nos outros três satélites galileanos, em especial, Europa.

As órbitas de Io, Europa e Ganimedes formam uma ressonância conhecida como a ressonância de Laplace. Para cada quatro órbitas que Io dá em torno de Júpiter, Europa dá exatamente duas, e Ganimedes dá exatamente uma. Esta ressonância faz com que a órbita dos satélites em questão se distorte em elipses, visto que cada satélite recebe energia de seus vizinhos no mesmo ponto em todas as órbitas tais satélites realizam. Forças de maré de Júpiter, de outro lado, causam a circularização das órbitas dos satélites em questão.

A excentricidade orbital destas três órbitas estressa a estrutura dos três satélites, com a gravidade jupiteriana "esticando" os satélites quando estes se aproximam do planeta. Próximo ao apogeu, os satélites voltam a assumir um formato mais esférico, devido à menor força de gravidade. O estresse aquece o interior dos satélites, via fricção. O efeito mais notável deste processo é a formação de atividade vulcânica em Io, satélite sujeito às maiores forças de maré. Outra consequência foi a formação de uma crosta relativamente recente em Europa, sugerindo atividade vulcânica recente no satélite.

CALISTO 

Calisto (por vezes indevidamente chamado de Calixto) é uma lua de Júpiter, descoberta em 7 de janeiro de 1610 por Galileo Galilei. É a terceira maior lua do Sistema Solar e a segunda maior do sistema joviano. Tem cerca de 99% do diâmetro de Mercúrio, mas apenas um terço de sua massa. É a quarta lua de Galileu por distância a Júpiter, com um raio orbital de cerca de 1 880 000 quilômetros. Não faz parte da ressonância orbital que afeta os outros três satélites de Galileu (Io, Europa e Ganimedes), e portanto, não sofre aquecimento pelas forças de maré.Sua rotação diferencial é síncrona, ou seja, uma face está sempre virada para Júpiter, enquanto a outra nunca é visível do planeta. A superfície de Calisto é menos afetada pela magnetosfera de Júpiter do que os seus outros satélites internos porque sua órbita está mais afastada do planeta.

É composto de quantidades aproximadamente iguais de rocha e gelo, com uma densidade média de 1,83 g/cm³. Os componentes identificados por espectroscopia da superfície incluem gelo, dióxido de carbono, silicatos e compostos orgânicos. Investigações pela sonda Galileu revelam que Calisto pode ter um pequeno núcleo de silicato e possivelmente um oceano subterrâneo de água líquida em profundidades superiores a 100 quilômetros.

Sua superfície é cheia de crateras e extremamente antiga. Não há nenhum sinal de atividade tectônica ou vulcanismo em sua superfície e pensa-se que sua evolução tem ocorrido principalmente sob a influência dos impactos de diversos meteoritos ao longo de sua existência. Os principais acidentes geográficos incluem várias crateras de impacto, grandes bacias de impacto com vários anéis concêntricos e cadeias de crateras com escarpas, cumes e depósitos. Em pequena escala, a superfície é variada e consiste em pequenos depósitos brilhantes congelados no topo das colinas, cercados por uma baixa manta de material escuro. A idade absoluta dos acidentes geográficos é desconhecida.

É cercado por uma atmosfera extremamente fina composta por dióxido de carbono, e provavelmente, oxigênio molecular, bem como por uma ionosfera bastante intensa. Pensa-se que Calisto se formou por uma lenta acreção a partir do disco de gás e poeira que circundava Júpiter após sua formação.A lenta convecção no interior de Calisto, que teve início logo após sua formação, produziu uma diferenciação parcial e oferece a possibilidade de que haja um oceano subterrâneo, a uma profundidade de 100 a 150 quilômetros, e pequeno núcleo rochoso.

A provável presença de um oceano dentro de Calisto deixa aberta a possibilidade de que possa abrigar vida. No entanto, acredita-se que as condições de Europa são melhores para a vida do que as de Calisto. Várias sondas já estudaram a lua. Por causa dos baixos níveis de radiação em sua superfície, Calisto tem sido considerado o local mais adequado para uma base para a futura exploração humana do sistema de Júpiter.
Ele foi descoberto em janeiro de 1610 por Galileu Galilei, junto com as outras três luas de Galileu.Entretanto, é possível que tenha sido observado pelo astrônomo chinês Gan De em 362 a.C. O satélite recebeu o nome de uma das várias amantes de Zeus na mitologia grega. Na mitologia grega, Calisto foi uma ninfa (ou, de acordo com algumas fontes, a filha de Licaão) que foi associada à deusa da caça Ártemis. O nome foi sugerido por Simon Marius pouco tempo depois da descoberta da lua.Marius atribuiu a sugestão a Johannes Kepler.No entanto, os nomes dos satélites de Galileu não foram usados por um tempo considerável, e só foram utilizados normalmente no século XX. Em grande parte da literatura astronômica, Calisto é conhecido por sua designação com números romanos, um sistema introduzido por Galileu, com o nome de Júpiter IV, ou "o quarto satélite de Júpiter".
Calisto é o satélite de Galileu mais distante de Júpiter, orbitando o planeta a uma distância de 1 880 000 quilômetros (26,3 vezes o raio de 71 398 quilômetros de Júpiter em si). Isso é muito maior que o semieixo maior do segundo satélite de Galileu mais longe de Júpiter, Ganimedes (1 070 000 quilômetros). Por causa dessa distância relativamente grande a Júpiter, Calisto não participa da ressonância orbital que afeta os outros três satélites de Galileu.
Como a maioria das luas do Sistema Solar, a rotação de Calisto é síncrona, ou seja, o tempo que ele leva para completar uma órbita em torno de Júpiter é o mesmo tempo que leva para completar uma volta em torno do seu próprio eixo (16,7 dias terrestres). Sua órbita é pouco excêntrica e inclinada, mas muda quase periodicamente devido às perturbações gravitacionais solares e planetárias, em uma escala de tempo de séculos. A excentricidade orbital de Calisto muda de 0,0072 a 0,0076 e sua inclinação muda de 0,20 a 0,60°.Essas alterações orbitais causam a inclinação axial variar de 0,4 a 1,6°.
A isolação dinâmica de Calisto significa que nunca houve aquecimento de marés no satélite, o que teve importantes consequências para sua estrutura interna e evolução. Sua distância a Júpiter também significa que o fluxo de partículas carregadas da magnetosfera do planeta em sua superfície é relativamente baixa—cerca de 300 vezes menor do que em Europa, por exemplo. Consequentemente, ao contrário das outras luas de Galileu, a irradiação de partículas carregadas teve um efeito relativamente menor na superfície de Calisto,[9] sendo o nível de radiação na superfície equivalente a uma dose de cerca de 0,01 rem (0,1 mSv) por dia.

GANIMEDES


Ganímedes (português europeu) ou Ganimedes (português brasileiro) é o principal satélite natural de Júpiter e a maior do sistema solar, é maior do que Mercúrio em termos de tamanho (mas não de massa). Este gigantesco satélite orbita Júpiter a 1,070 milhões de quilómetros de distância.

Ganímedes foi descoberta em 1610 e é uma das quatro luas de Galileu, descobertas por Galileo Galilei na órbita de Júpiter junto à Erfredon, em suas observações feitas graças à invenção do telescópio. No entanto, Ganímedes é vísivel a olho nu, mas apenas em condições favoráveis e por aqueles com boa visão.
Tal como as outras três luas de Galileu, o nome de Ganímedes foi dado por Simon Marius com o nome de amores de Zeus (Júpiter para os romanos), sendo o único nome masculino das quatro.

Na mitologia, Ganímedes tinha como função levar a ambrósia a Júpiter. Antes de adquirir a imortalidade era um jovem famoso pela sua beleza. Zeus (Júpiter) apaixonou-se por ele e este transformou-se em águia para o raptar, e assim levou Ganímedes até aos céus nas suas garras.
Ele foi descoberto a 11 de Janeiro de 1610 por Galileu Galilei. Alguns vêem Simon Marius como o seu descobridor.

Os astrónomos, baseados em observações feitas a partir da superficie da Terra, tinham apenas poucas informações sobre Ganimedes, mesmo com o uso dos melhores telescópios de meados do século XX. Foi só quando as sondas Pioneer 10 e 11 chegaram a Júpiter em 1973 e em 1974, respectivamente, que se conseguiu obter as primeiras imagens mais detalhadas das grandes luas de Júpiter.

As Pioneer conseguiram captar duas boas imagens de Ganímedes. Estas imagems mostravam pouca variação de cor, mas revelaram uma variação substancial de albedo.

Em 1979 as sondas Voyager alcançam Júpiter. As imagens da Voyager mostraram que Ganímedes tinha dois tipos de terrenos distintos: uma parte do globo é coberta por crateras, a outra por sulcos, o que revelou que a superfície gelada poderia sofrer processos tectónicos globais.

As Voyager foram as que descobriram que Ganímedes era, na verdade, o maior satélite do Sistema Solar, e não Titã em Saturno como se pensava até então. Isto só foi possível determinar quando as Voyager chegaram a Titã e descobriram que esta tinha uma atmosfera bastante densa que dava aspecto de ser maior.

Devido ao seu tamanho e características, Ganímedes também entra para os contos de ficção científica através da imaginação de vários autores; de destacar o livro (Farmer in the Sky) de Robert Heinlein, em que Ganímedes é terraformado e colonizado por seres humanos. Em (2061: Odisseia Três) de Arthur C. Clarke, Ganímedes é aquecido pelo novo sol Lúcifer e contém um grande lago equatorial e é o centro da colonização humana no sistema joviano.

Na década de 1980 uma equipe de astrónomos indianos e norte-americanos num observatório na Indonésia detectaram uma atmosfera ténue à volta de Ganímedes durante uma ocultação quando Júpiter passou em frente de uma estrela. Mais recentemente, o Telescópio Espacial Hubble, detectou que essa atmosfera era composta de oxigénio, tal como a atmosfera encontrada em Europa.

Em 7 de Dezembro de 1995, a sonda Galileu chegou a Júpiter numa viagem contínua pelo planeta e suas luas durante oito anos. Logo na primeira aproximação a Ganímedes, a Galileo descobriu que Ganímedes tinha o seu próprio campo magnético imerso no campo magnético gigantesco de Júpiter.
Ele possui um diâmetro médio de 5262,4 km; sendo um pouco maior que o planeta Mercúrio.
A densidade de Ganímedes circunda os 1,942 g/cm³. A baixa densidade deve-se à elevada percentagem de gelos com alguns silicatos de material primordial e de impacto proveniente do espaço.
Ganímedes é composto por rocha de silicatos e gelo de água, com a crusta de gelo flutuando sobre um manto lamacento que pode conter uma camada de água líquida. A sonda Galileu indicou que a estrutura de Ganímedes divide-se em três camadas: um pequeno núcleo de ferro ou de ferro e enxofre derretido rodeado por um manto rochoso de silicatos com uma capa de gelo por cima. Este nucleo metálico sugere um elevado grau de aquecimento no passado de Ganímedes do que se julgava. De facto, Ganímedes pode ser semelhante a Io, mas com uma capa externa adicional de gelo.
A crusta gelada divide-se em placas tectônicas. Estas características sugerem que o interior terá sido mais activo que hoje, com muito mais calor no manto.
O campo magnético de Ganímedes está inserido no campo magnético gigantesco de Júpiter. Provavelmente, este é criado como o da Terra, resultando do movimento de material condutor no seu interior. Pensa-se que este material condutor possa ser uma camada de água líquida com uma concentração elevada de sal, ou que possa ser originado no núcleo metálico de Ganímedes.
IO


Io é uma das quatro grandes luas de Júpiter conhecidas como Luas de Galileu, em honra ao seu descobridor Galileu Galilei.
Io, ligeiramente maior que a Lua, é também a quarta maior lua do sistema solar, logo a seguir a Ganímedes, Titã e Calisto (esta última e Ganímedes são também luas de Galileu em Júpiter).
Mesmo com o seu tamanho algo modesto e apesar de estar localizada num local frio do sistema solar, Io é descrita como o que mais se aproxima do conceito de inferno em todo o sistema solar, já que é o local com maior actividade vulcânica do Sistema Solar. Os seus vulcões chegam a atingir temperaturas à volta dos 1700 graus Celsius, logo, mais quentes que os vulcões da Terra (acredita-se que também os vulcões dos primórdios da Terra atingissem temperaturas semelhantes).
Aliada à maior concentração vulcânica do sistema solar, a libertação de compostos de enxofre durante as erupções confere a Io a aparência de um mundo de diferentes cores: branco, vermelho, laranja, amarelo e preto. Outra consequência desta actividade vulcânica consiste na expulsão de matéria e gases que se afastam para centenas de quilómetros de altura. Devido à fraca gravidade, alguma dessa matéria escapa para o espaço, formando um toro em redor de Júpiter.
O nome desta lua provém de Io, uma das paixões de Zeus (que corresponde ao deus romano Júpiter), segundo a mitologia grega . Apesar do nome ter sido sugerido pela primeira vez por Simon Marius, só no século XX é que o seu uso tornou-se corrente. Até então era conhecida pela denominação, em numeração romana, Júpiter I.
Na mitologia, Io era uma ninfa (ou princesa, segundo outras versões) por quem Zeus (Júpiter) se apaixonou. O deus metamorfoseou-a em vaca para a proteger dos ciúmes de Hera (Juno na mitologia romana), a mulher de Zeus. Hera encarregou, então, o boieiro Argo de vigiá-la. Zeus ordenou Hermes (Mercúrio) a retirar Io da vigilância de Argo. Hermes só o conseguiu depois de ter adormecido Argo ao som da flauta de Pã, matando-o em seguida. Hera deu à sua ave consagrada, o Pavão, os cem olhos de Argo para que o fantasma do boieiro continuasse a perseguir a virgem-novilha Io.

Imagem de Io e Júpiter tiradas a partir da Terra por um astrónomo amador.A lua Io foi descoberta a 7 de Janeiro de 1610 por Galileu Galilei através da sua luneta. Io apresenta-se no céu nocturno com 5,0 de magnitude.
Contudo, alguns autores defendem que a descoberta se deveu a Simon Marius. Este publicou os resultados das suas observações no seu trabalho de 1614 «Mundus Jovialis», onde revela que teria descoberto as luas uma semana antes de Galileu, no final de 1609. Galileu duvidou desses factos e catalogou o trabalho de Marius como plágio. Em meados do século XX, observações feitas sugeriram que as regiões polares de Io eram avermelhadas.  Com a passagem das sondas Pioneer, na década de 1970, pouco se descobriu sobre Io. A Pioneer 10 não conseguiu obter nenhuma imagem devido à radiação de Júpiter. Mas, com a Pioneer 11, conseguiu-se uma imagem adequada em que se verificava que a região polar se apresentava de cor alaranjada, contrastando com equador esbranquiçado. Nesta altura, já se sabia que Io tinha atmosfera, se bem que pouco densa.


Impressão artística da aproximação da sonda Galileo a Io.Nas observações feitas a partir da Terra, os astrónomos verificaram que Io tinha algumas características insólitas. Em 1974 notou-se que Io estava rodeada de uma neblina amarelada, composta de átomos de Sódio. De facto, parecia viajar através de uma ténue neblina (o Toro de Plasma de Io) que cobria a sua órbita cercando Júpiter. Presumia-se na altura que Io fosse a fonte dessa neblina, se bem que ninguém conseguisse explicar qual a sua causa.

Quando a sonda Voyager 1 enviou as primeiras imagens, nas proximidades de Io, em 1979, os cientistas esperavam encontrar numerosas crateras. Contrariamente a todas as expectativas, Io quase que não tinha crateras. Na verdade, possuía uma superfície ainda jovem causada pela intensa actividade vulcânica que cobriu quase por completo os sinais quaisquer crateras. A Voyager 1 conseguiu observar nove vulcões activos na superfície; mais tarde, a Voyager 2 observou oito dos nove em actividade, verificando-se que o maior dos vulcões estava inactivo.

A surpresa devida à descoberta de vulcões activos despertou o interesse da cultura popular por esta lua, que passou a ser referida em livros, filmes, jogos ou vídeos de música. É descrito em obras de ficção cientifica como «2010: Odyssey Two» de Arthur C. Clarke (1984) ou no filme Outland de 1981.

A 8 de fevereiro de 1992, a sonda Ulysses usou a gravidade de Júpiter para poder explorar os pólos do Sol. A Ulysses estudou o Toro de Plasma de Io que circunda Júpiter, verificando, também, uma diminuição na quantidade de vulcões em erupção.

Depois de ter chegado a Júpiter em 1995, só no final de 1999 é que a sonda Galileo sobrevoou Io, devido à proximidade da lua a Júpiter. Assim a aproximação a Io foi guardada para mais tarde na missão. A Galileo aproximou-se mais do que qualquer sonda, tirou melhores fotografias, observou vulcões em erupção e permitiu a descoberta de que Io tem um grande núcleo de ferro, tal como os planetas telúricos do sistema solar interior.

EUROPA


Europa é uma das quatro luas do planeta Júpiter conhecidas como luas de Galileu (quatro enormes e exóticas luas com o tamanho de planetas).

Europa é única por si própria, apresenta-se com uma superfície gelada muito brilhante com riscos coloridos. Pensa-se que seja um mundo oceânico coberto por uma capa de gelo que protege o mar interior da adversidade do Espaço. Devido às condições existentes em seu interior, alguns cientistas julgam que lá poderá existir vida, tal como a que existe nas profundezas dos mares da Terra. É, junto com Marte, o local mais provável onde se pensa que é possível encontrar vida extraterrestre no sistema solar, apesar de uma pequena possibilidade em Titã.
Atmosfera e clima

Observações recentes feitas pelo Telescópio Espacial Hubble revelam que Europa tem uma atmosfera ténue (1 micropascal de pressão atmosférica à superfície) composta de oxigénio.

De entre todas as luas do sistema solar, só seis têm atmosfera: Io, Calisto, Encélado, Ganímedes, Titã e Tritão. Ao contrário do oxigénio da atmosfera terrestre, o oxigénio em Europa não deve ter origem biológica. É provavelmente gerado pela luz do sol e partículas carregadas que atingem a superfície gelada produzindo vapor de água que subsequentemente se divide em hidrogénio e oxigénio. O hidrogénio escapa à gravidade de Europa por causa da sua massa atómica muito pequena, deixando para trás o oxigénio.

Em algumas áreas conseguiu-se observar uma espécie de nuvem, talvez névoa de gotas de amónia. A temperatura à superfície de Europa é de -163°C graus no equador e de apenas -223°C graus nos pólos.

Júpiter



Júpiter é o maior planeta do Sistema Solar, tanto em diâmetro quanto em massa e o quinto mais próximo do Sol. Possui menos de um milésimo da massa solar, mas 2,5 vezes a massa de todos os outros planetas em conjunto. É um planeta gasoso junto com Saturno, Urano e Netuno. Estes quatro planetas são por vezes chamados de planetas jupiterianos ou planetas jovianos. Júpiter é um dos quatro gigantes gasosos, isto é, não é composto primariamente de matéria sólida.

Júpiter é composto principalmente de hidrogênio e hélio. O planeta também pode possuir um núcleo composto por elementos mais pesados. Por causa de sua rotação rápida, de cerca de dez horas, ele possui o formato de uma esfera oblata. Sua atmosfera é dividida em diversas faixas, em várias latitudes, resultando em turbulência e tempestades onde as faixas se encontram. Uma dessas tempestades é a Grande Mancha Vermelha, uma das características visíveis de Júpiter mais conhecidas e proeminentes, cuja existência data do século XVII, com ventos de até 500 km/h e possuindo um diâmetro transversal duas vezes maior do que a Terra.

Júpiter é observável a olho nu, com uma magnitude aparente máxima de -2,8, sendo no geral o quarto objeto mais brilhante no céu, depois do Sol, da Lua e de Vênus. Por vezes, Marte aparenta ser mais brilhante do que Júpiter. O planeta era conhecido por astrônomos de tempos antigos e era associado com as crenças mitológicas e religiosas de várias culturas. Os romanos nomearam o planeta de Júpiter, um deus de sua mitologia

Júpiter possui um tênue sistema de anéis, e uma poderosa magnetosfera. Possui ao menos 63 satélites, dos quais se destacam os quatro descobertos por Galileu Galilei em 1610: Ganímedes, o maior do Sistema Solar, Calisto, Io e Europa, os três primeiros são mais massivos que a Lua e o primeiro, tem um diâmetro maior que o do planeta Mercúrio.

Em tempos modernos, várias sondas espaciais visitaram Júpiter,todas elas de origem estado-unidense. A Pioneer 10 passou por Júpiter em Dezembro de 1973, seguida pela Pioneer 11, cerca de um ano depois. A Voyager 1 passou em março de 1979, seguida pela Voyager 2 em Julho do mesmo ano.A Galileu entrou em órbita de Júpiter em 1995, enviando uma sonda através da atmosfera de Júpiter no mesmo ano e conduzindo múltiplas aproximações com os satélites galileanos até 2003. A sonda Galileu também presenciou o impacto do cometa Shoemaker-Levy 9 em Júpiter em 1994, possibilitando a observação direta deste evento. Outras missões incluem Ulysses, Cassini-Huygens, e New Horizons, que utilizaram o planeta para aumentar sua velocidade e ajustar sua direção aos seus respectivos objetivos. Um futuro alvo de exploração é Europa, satélite que potencialmente possui um oceano líquido.

Composição



Imagem da Grande Mancha Vermelha, obtida pela Voyager 1 em 25 de fevereiro de 1979, quando a sonda estava a 9,2 milhões km de Júpiter. Detalhes de até 160 km de extensão podem ser vistos aqui. O padrão colorido e ondulado à esquerda da Mancha Vermelha é uma região com movimentos extremamente complexos e variáveis. A tempestade oval branca diretamente abaixo da Mancha Vermelha possui o mesmo diâmetro da Terra.A atmosfera de Júpiter é composta de 88 a 92% de hidrogénio e 8 a 12% de hélio, referentes a percentagem de volume ou fração de moléculas. Esta composição muda quando descrita em termos de massa, considerando que uma molécula de hélio é cerca de quatro vezes mais massiva que uma de hidrogénio, 75% hidrogénio, 24% hélio e 1% composta por outros elementos. O interior do planeta contém materiais mais densos, mudando a distribuição por massa para 71% hidrogénio, 24% hélio e 5% outros elementos. A atmosfera contém traços de metano, vapor de água, amônia, sílicas, carbono, etano, sulfeto de hidrogênio, néon, oxigênio, fosfina e enxofre. A parte externa da atmosfera contém cristais de amônia congelada. Através de testes usando infravermelho e ultravioleta, traços de benzeno e outros hidrocarbonetos também foram encontrados.

As proporções de hidrogênio e hélio em Júpiter são bastante similares à composição teorizada da nebulosa solar primordial. Porém, as regiões exteriores da atmosfera do planeta contém apenas 20 partes por milhão em massa de néon, 10% a do Sol.A atmosfera jupiteriana também possui apenas 80% a abundância de hélio, em relação ao Sol. Um possível motivo é precipitação destes elementos em direção ao interior do planeta.Em contrapartida, a abundância de gases inertes mais pesados na atmosfera de Júpiter é duas a três vezes a do Sol.

Estudos de espectroscopia mostraram que possivelmente Saturno possui uma composição similar à de Júpiter. Os outros gigantes gasosos, Urano e Neptuno, por outro lado, possuem relativamente menos hidrogênio e hélio, porém, por causa da falta de sondas de entrada atmosférica, ainda não se sabe a precisa composição química de elementos mais pesados dos outros gigantes gasosos.

A rotação da atmosfera superior de Júpiter não é constante em todos os seus pontos, um efeito notado primeiramente por Giovanni Domenico Cassini em 1690. A rotação da região polar da atmosfera do planeta é aproximadamente cinco minutos mais demorada do que na região equatorial. Além disso, grupos de nuvens em diferentes latitudes deslocam-se em diferentes direções, seguindo as correntes de vento. A interação desses padrões conflitantes de circulação causa tempestades e turbulência. A velocidade dos ventos pode atingir até 600 km/h.

Júpiter é coberto por nuvens compostas por cristais de amônia e possivelmente hidrosulfeto de amônia. As nuvens estão localizadas na tropopausa, e estão organizadas em bandas de diferentes latitudes, conhecidas como regiões tropicais. Estas estão sub-divididas em "faixas" de cor clara, e "cinturões" de cor escura. As interações destas diferentes bandas e seus respectivos padrões de circulação atmosférica criam zonas nas quais tempestades e turbulências atmosféricas ocorrem. Ventos de até 100 m/s (360 km/h) são comuns em tais regiões. As zonas possuem comprimento, cor e intensidade variáveis com o passar do tempo, mas têm permanecido estáveis o suficiente para receberem termos de identidade da comunidade astronômica.

A camada de nuvens possui apenas 50 km de profundidade, e consiste em duas partes: uma camada grossa inferior e uma camada mais fina, menos visível, superior. Há a possibilidade que existam nuvens de água sob a camada de amônia, que seriam a causa de raios detectados na atmosfera (a água é uma molécula polar que pode carregar uma carga, então, é capaz de criar a separação de carga necessária para produzir raios). Estas descargas elétricas podem ter mil vezes o poder dos raios terrestres. As nuvens de água poderiam formar tempestades, alimentadas pelo calor proveniente do interior do planeta.

As nuvens de Júpiter possuem cores de tom laranja e marrom. Isto é devido a elementos que mudam de cor quando expostos aos raios ultravioleta do Sol. Não se sabe com exatidão os elementos envolvidos e sua composição, mas acredita-se que sejam fósforo, enxofre ou hidrocarbonetos.Estes compostos coloridos, chamados de cromóforos, misturam-se com as nuvens da camada inferior. As zonas formam-se quando células de convecção formam amônia cristalizada que diminui a visibilidade da camada inferior de nuvens.

Devido à baixa inclinação axial de Júpiter, as regiões polares do planeta recebem significantemente menos radiação solar do que a região equatorial. A convecção de material do interior do planeta, porém, transporta energia para os pólos, equalizando as temperaturas na camada de nuvens.

A característica mais marcante de Júpiter é a Grande Mancha Vermelha, uma tempestade anticiclônica localizada 22° ao sul do equador, que, com 24 mil a 40 mil km de extensão, pode abrigar dois ou três planetas com o diâmetro da Terra. Sua existência data desde ao menos 1831, e possivelmente, 1665. Modelos matemáticos sugerem que a tempestade é estável, e pode ser uma característica permanente do planeta.A tempestade é grande o suficiente para ser vista através de um telescópio, com uma abertura de ao menos 12 cm.

A Mancha Vermelha possui um formato oval e gira em torno de si mesma, sentido anti-horário, com um período de seis dias. A altitude máxima da tempestade é cerca de 8 km acima das nuvens que a cercam.

Tempestades deste tipo são comuns dentro da atmosfera turbulenta de gigantes gasosos. Júpiter também possui ovais brancas e ovais marrons, tempestades menores sem nome. Ovais brancas comumente consistem de nuvens relativamente frias dentro da atmosfera superior. Ovais marrons são mais quentes, e localizados dentro de das camadas de nuvens "normais" do planeta. Tais tempestades duram entre algumas horas até séculos.

Mesmo antes de a Voyager ter provado que a Grande Mancha Vermelha era uma tempestade, havia forte evidência que ela não poderia estar associada com nenhuma característica presente em camadas mais profundas em Júpiter, visto que tal mancha gira em torno do planeta de maneira diferente do resto da atmosfera, por vezes mais rápido, e por vezes, mais devagar. Durante sua história conhecida, a tempestade tem girado diversas vezes em torno do planeta, relativo a qualquer possível marcador rotacional presente no interior.

Em 2000, uma nova característica atmosférica proeminente formou-se no hemisfério sul, que é similar em aparência à Grande Mancha Vermelha, mas menor em tamanho. Esta tempestade foi criada através da fusão de três ovais brancas menores — que foram vistas pela primeira vez em 1938. Esta tempestade foi chamada de Oval BA, e apelidada de "Mancha Vermelha Junior". Desde então, seu tamanho tem aumentado e sua cor mudado de branco para vermelho.

Massa


Aproximação da Terra e de Júpiter em tamanho, incluindo a Grande Mancha Vermelha.Júpiter possui uma massa 2,5 vezes maior do que todos os outros planetas tomados em conjunto, massivo o suficiente para fazer com que seu baricentro com o Sol localize-se acima da superfície solar (a 1,068 raios solares do centro do Sol). O planeta possui uma massa 318 vezes maior do que a da Terra, um diâmetro 11 vezes superior ao terrestre e um volume 1 317 vezes maior, sendo, porém, significantemente menos denso que nosso planeta.

Uma massa jupiteriana (MJ) é utilizada para descrever a massa de outros gigantes gasosos, em particular, a de planetas extra-solares. Por mais impressionante que Júpiter seja, já se descobriu vários com massas muito maiores fora do Sistema Solar. Por outro lado, através de modelos teóricos, acredita-se que Júpiter tenha um diâmetro tão grande como é possível a um planeta com a sua composição e história evolucionária, visto que adicionar-lhe mais massa teria apenas como resultado aumentar a compressão gravitacional.Modelos teóricos indicam que se uma adição significativa de massa ocorresse, o planeta iria diminuir em tamanho. Adições menores de massa resultariam em nenhuma mudança aparente. Após quatro MJ, o planeta iria diminuir em tamanho. O processo de diminuição continuaria à medida que massa fosse adicionada, até que uma ignição estelar ocorresse com o planeta, transformando-o em uma anã marromPB ou anã castanhaPE , em torno de 50 MJ.

Não existe uma definição inequívoca do que distingue um planeta grande e massivo, como Júpiter, de uma anã marromPB ou anã castanhaPE , mas para que ele fosse uma estrela, teria de ter cerca de 75 vezes mais massa do que tem. Porém, a menor anã vermelha possui o diâmetro apenas 30% maior que o de Júpiter, levando alguns astrônomos a apelidarem o planeta de "estrela falhada". Porém, não se sabe se os processos envolvidos na formação de planetas como Júpiter são similares aos processos envolvidos na formação de sistemas estelares múltiplos.

Júpiter irradia mais calor do que recebe do Sol. A quantidade de calor produzido dentro do planeta é quase igual à quantidade total de radiação solar que o planeta recebe. Este calor adicional é gerado através do mecanismo de Kelvin-Helmholtz, através de contração adiabática, resultando na contínua redução do diâmetro do planeta, de dois centímetros ao ano. Quando o planeta foi formado, Júpiter era muito mais quente, e possuía o dobro do diâmetro atual.


Órbita e rotação

Ele é o único planeta cujo centro de massa com o Sol fica fora do último, 1,068 raio solar ou 7% acima da superfície solar. A distância média entre Júpiter e o Sol é de 778 milhões de quilômetros, cerca de 5,2 UA. Júpiter completa uma órbita em torno do Sol a cada 11,86 anos, dois quintos da de Saturno, formando a ressonância orbital de 5:2 entre os dois maiores planetas do Sistema Solar.

A órbita elíptica de Júpiter possui uma inclinação de 1,31° comparada com a da Terra. Por causa de uma excentricidade de 0,048, a distância entre Júpiter e o Sol varia 75 milhões de quilômetros entre o perélio e o afélio, ou o ponto mais perto e mais distante (neste caso em relação ao Sol) da órbita do planeta, respectivamente. A inclinação axial de Júpiter é relativamente pequena: apenas 3,13°. Como consequência, o planeta não possui mudanças significativas de estações, ao contrário da Terra e de Marte, por exemplo.

A rotação de Júpiter é a mais rápida entre todos os planetas do Sistema Solar, o planeta completa uma volta em torno de si mesmo em menos de 10 horas, criando um achatamento polar facilmente visível em um telescópio amador na Terra. Esta rotação gera uma aceleração centrípeta no equador de cerca de 1,67 m/s²; visto que a aceleração gravitacional do planeta é de 24,79 m/s², o resultado é uma aceleração gravitacional no equador de 23,12 m/s². Júpiter possui o formato de uma esfera oblata, ou seja, o diâmetro no equador é maior que o diâmetro entre os seus pólos geográficos. O equador de Júpiter é 9 275 km maior que o diâmetro medido entre os pólos.

Pelo fato de Júpiter não ser um objeto sólido, a parte superior da sua atmosfera possui rotação diferencial. A rotação da atmosfera do planeta na sua região polar é cerca de cinco minutos mais longa do que a da atmosfera equatorial. Por causa disso, três sistemas são usados como referência, particularmente a respeito de características atmosféricas. O Sistema I localiza-se entre 10° N to 10° S de latitude, e possui o menor período do planeta, com 9 h 50 min. O Sistema II corresponde a todas as latitudes ao norte ou ao sul das primeiras, no qual o período é de 9h 55min. O Sistema III foi criado originalmente por astrônomos de rádio, e corresponde à rotação da magnetosfera do planeta. O período deste sistema é oficialmente a rotação de Júpiter.
 

Abaixo deixo um vídeo de Júpiter !
Espero que gostem !

 






Marte



Marte é o quarto planeta a contar do Sol e é o último dos quatro planetas telúricos no sistema solar, situando-se entre a Terra e a cintura de asteróides, a 1,5 UA do Sol (ou seja, a uma vez e meia a distância da Terra ao Sol). De noite, aparece como uma estrela vermelha, razão por que os antigos romanos lhe deram o nome de Marte, o deus da guerra. Os chineses, coreanos e japoneses chamam-lhe "Estrela de Fogo",baseando-se nos cinco elementos da filosofia tradicional oriental. Executa uma volta em torno do Sol em 687 dias terrestres (quase dois anos terrestres)

Marte é um planeta com algumas afinidades com a Terra: tem um dia com uma duração muito próxima do dia terrestre e o mesmo número de estações.

Marte tem calotas polares que contêm água e dióxido de carbono gelados, o maior vulcão do sistema solar - o Olympus Mons, um desfiladeiro imenso, planícies, antigos leitos de rios secos, tendo sido recentemente descoberto um lago gelado. Os primeiros observadores modernos interpretaram aspectos da morfologia superficial de Marte de forma ilusória, que contribuíram para conferir ao planeta um estatuto quase mítico: primeiro foram os canais; depois as pirâmides, o rosto humano esculpido, e a região de Hellas no sul de Marte que parecia que, sazonalmente, se enchia de vegetação, o que levou a imaginar a existência de marcianos com uma civilização desenvolvida. Hoje sabemos que poderá ter existido água abundante em Marte e que formas de vida primitiva podem, de fato, ter surgido

Mitologia de Marte
Marte é um planeta conhecido desde a antiguidade e na mitologia helénica representa Ares, o deus da fúria e da guerra, devido à sua coloração avermelhada. O povo romano, que herdou muito da sua cultura da Grécia, chamou-lhe de Marte, nome por que hoje conhecemos, quer o deus, quer o planeta.

Outras civilizações observavam também Marte no céu nocturno: os egípcios conheciam-no como "Her Deschel" ou "O Vermelho". Já para os babilónios, Marte era "Nergal" ou "A Estrela da Morte".
Características físicas
Comparação do tamanho da Terra e de Marte.Marte tem aproximadamente a metade do diâmetro da Terra. É menos denso que a Terra, com cerca de 15% do volume da Terra e 11% da massa. Sua área de superfície é apenas ligeiramente inferior à área total das terras emersas da Terra. Enquanto Marte é maior e mais massivo do que Mercúrio, Mercúrio tem uma densidade mais elevada. Isso resulta em uma força gravitacional ligeiramente mais forte na superfície de Mercúrio. Marte é também mais ou menos intermediário em tamanho, massa e gravidade à superfície entre a Terra e a Lua (a Lua é cerca de metade do diâmetro de Marte, enquanto que o Terra é duas vezes maior que o de Marte, a Terra é aproximadamente dez vezes mais massivo de Marte, e a Lua dez vezes menos massiva que Marte). A aparência vermelha-alaranjada da superfície marciana é causada por óxido de ferro (III), mais comumente conhecido como hematita, ou ferrugem.

Fobos


Fobos é uma das duas luas de Marte. Fobos é a maior e a mais próxima lua de Marte. Fobos foi descoberto por Asaph Hall em 18 de Agosto de 1877, justamente seis dias após a descoberta de seu parceiro Deimos.

Fobos é, em todo o Sistema Solar, o satélite que orbita mais próximo do planeta-mãe: menos de seis mil quilômetros acima da superfície marciana. Encontra-se, por isso, abaixo da órbita síncrona para Marte. Por esse motivo, a sua órbita vai descendo a um ritmo de 1,8 m por século. Assim, dentro de 50 milhões de anos pode ocorrer uma de duas coisas: ou Fobos se despenha sobre Marte ou, o que é mais provável, antes que isso aconteça as forças gravitacionais destruirão o satélite criando um anel à volta de Marte.

Os astrônomos supõem que o satélite era provalmente um asteróíde que foi capturado pela força de gravidade do planeta. A outra lua Deimos e também algumas luas de Netuno, acreditam-se também que eram asteróides que foram capturados.

Demos



Deimos é a menor e mais afastada das duas luas de Marte. É, também, a menor lua reconhecida do sistema solar. Seu nome é grego. Deimos era um dos filhos de Ares e Afrodite; deimos, em grego, significa terror.

A lua foi descoberta – junto com Fobos, o outro satélite de Marte – em agosto de 1877 por Asaph Hall e fotografado pela Viking 1 em 1977. Deimos tem um formato bastante irregular e acredita-se que se trate de um asteróide que foi perturbado de sua órbita por Júpiter e que acabou por ser capturado pela gravidade de Marte, passando a ser seu satélite.
Por ser pequeno, Deimos não apresenta uma forma esférica, possuindo dimensões muito irregulares. É composto por rochas ricas em carbono, tal como muitos asteróides, e gelo. A sua superfície apresenta um número razoável de crateras mas, relativamente a Fobos, é muito mais lisa, consequência do preenchimento parcial das crateras com rególito (rochas decompostas). As maiores crateras deste satélite são Swift e Voltaire que medem, aproximadamente, 30 km de diâmetro.

Visto de Deimos, Marte surge no céu como um objecto 1000 vezes maior e 400 vezes mais brilhante do que a Lua cheia, como é observada da Terra.

Visto de Marte, Deimos surge como um pequeno ponto no céu, difícil de distinguir das outras estrelas embora, no seu máximo brilho, possua um brilho equivalente a Vênus (tal como é visto da Terra).

Abaixo deixo um vídeo de Marte !
Espero que gostem


Lua




A Lua (do latim Luna) é o único satélite natural da Terra, situando-se a uma distância de cerca de 384.405 km do nosso planeta.
Segundo a última contagem, mais de 150 luas povoam o sistema solar: Netuno é cercado por 13 delas; Urano por 27; Saturno tem 60; Júpiter é o que tem mais até então e possui 63. A Lua terráquea não é a maior de todo o Sistema Solar - Ganimedes, uma das luas de Júpiter, é a maior  - mas nossa Lua continua sendo a maior proporcionalmente em relação ao seu planeta. Com mais de 1/4 do tamanho da Terra e 1/6 de sua gravidade, é o único corpo celeste visitado por seres humanos e onde a NASA (sigla em inglês de National Aeronautics and Space Administration) pretende implantar bases permanentes.

Visto da Terra, o satélite apresenta fases e exibe sempre a mesma face (situação designada como acoplamento de maré), fato que gerou inúmeras especulações a respeito do teórico lado escuro da Lua, que na verdade fica iluminado quando estamos no período chamado de Lua nova. Seu período de rotação é igual ao período de translação. A Lua não tem atmosfera e apresenta, embora muito escassa, água no estado sólido (em forma de cristais de gelo). Não tendo atmosfera, não há erosão e a superfície da Lua mantém-se intacta durante milhões de anos. É apenas afetada pelas colisões com meteoritos.




Nessas fotos podemos ver os dois lados da Lua

É a principal responsável pelos efeitos de maré que ocorrem na Terra, em seguida vem o Sol, com uma participação menor. Pode-se dizer do efeito de maré aqui na Terra como sendo a tendência de os oceanos acompanharem o movimento orbital da Lua, sendo que esse efeito causa um atrito com o fundo dos oceanos, atrasando o movimento de rotação da Terra cerca de 0,002 s por século, e, como consequência, a Lua se afasta de nosso planeta em média 3 cm por ano.

A Lua é, proporcionalmente, o maior satélite natural do nosso Sistema Solar. Sua massa é tão significativa em relação à massa da Terra que o eixo de rotação do sistema Terra-Lua encontra-se muito longe do eixo central de rotação da Terra. Alguns astrônomos usam este argumento para afirmar que vivemos em um dos componentes de um planeta duplo, mas a maioria discorda, uma vez que para que um sistema planetário seja duplo é necessário que seu eixo de rotação esteja fora dos dois corpos


Foto de um impacto que originou a Lua

Eclipse
Eclipses são fenômenos que ocorrem quando o Sol, a Terra e Lua estão alinhados. Eclipses solares ocorrem durante a lua nova, quando a Lua está entre o Sol e a Terra. Eclipses lunares ocorrem durante a lua cheia, quando a Terra está entre o Sol e a Lua. Eclipses acontecem quando a Lua alinha-se com o Sol e a Terra, mas devido à orbita elíptica dela de 6°, os eclipses não acontecem em cada lua cheia e nova.

Eclipse solar
Eclipses solares ocorrem quando a lua está entre a Terra e o Sol, ocultando completamente a sua luz numa estreita faixa terrestre.
Um eclipse do Sol pode ser visto apenas em um ponto da Terra, que move-se devido à rotação da Terra e da translação da Lua. A distância da Lua em relação à Terra determina a quantidade de luz que é coberta do Sol, bem como a largura da penumbra e escuridão total (mais ou menos cem quilômetros). Essa largura estará no máximo se a Lua aparece no perélio, na qual a largura pode atingir até 270 quilômetros.
Eclipses totais do sol são eventos relativamente raros. Apesar deles ocorrerem em algum lugar da Terra a cada dezoito meses, é estimado que eles recaem (isto é, duas vezes) em um dado lugar apenas a cada trezentos ou quatrocentos anos. Após um longo tempo esperando, eclipse total do Sol dura apenas alguns minutos, dado que a umbra da Lua move-se leste a mais de 1700 km/h. Escuridão total não dura mais que 7 minutos e 40 segundos. A cada milênio ocorrem menos que 10 eclipses totais do Sol que ultrapassam mais de 7 min de duração. A última vez que isso aconteceu foi em 30 de junho de 1973, e a próxima está a acontecer apenas em 25 de junho de 2150. Para os astrônomos, um eclipse total do Sol é uma rara oportunidade de observar a coroa solar (a camada externa do Sol). Normalmente, a coroa solar não é visível a olho nu devido ao fato que a fotosfera é muito mais brilhante do que a coroa solar.



Foto de um eclipse Solar

Eclipse lunar
Um eclipse lunar ocorre quando a Terra está entre a Lua e o Sol, sempre durante a lua cheia. Ao contrário dos eclipses solares, que são vistos apenas em pequenas partes do planeta, o eclipse lunar pode ser visto de várias regiões.

A Lua não desaparece completamente na sombra da Terra, mesmo durante um eclipse total, podendo então, assumir uma coloração avermelhada ou alaranjada. Isso é consequência da refração e da dispersão da luz do Sol na atmosfera da Terra que desvia apenas certos comprimentos de onda para dentro da região da umbra. Esse fenômeno também é responsável pela coloração avermelhada que o céu assume durante o poente e o nascente. De fato se nós observássemos o eclipse a partir da Lua, nós veríamos o Sol se pondo atrás da Terra.

Os eclipses lunares são classificados de acordo com a parte da Lua que é obscurecida pela sombra da Terra, e por qual parte da sombra da Terra ela está sendo obscurecida. Os eclipses penumbrais ocorrem quando a Lua entra na região de penumbra, o que resulta numa variação do brilho da Lua que dificilmente é notada; o eclipse parcial ocorre quando apenas parte da Lua é obscurecida pela sombra da Terra; o eclipse total, quando toda a face visível da Lua é obscurecida pela umbra; e um último tipo de eclipse lunar raro é denominado eclipse horizontal, que ocorre quando o Sol e a Lua, em eclipse, estão visíveis ao mesmo tempo no céu, sempre ou no nascente



Foto de um eclipse Lunar

Deixo aqui um vídeo para vocês acompanharem mais sobre a Lua e seus mistérios





Terra



A Terra é o terceiro planeta mais próximo do Sol, o mais denso e o quinto maior dos oito planetas do Sistema Solar. É também o maior dos quatro planetas telúricos. É por vezes designada como Mundo ou Planeta Azul.

Lar de milhões de espécies de seres vivos, incluindo os humanos, a Terra é o único corpo celeste onde é conhecida a existência de vida. O planeta formou-se há 4,54 bilhões (mil milhões) de anos, e a vida surgiu na sua superfície um bilhão de anos depois. Desde então, a biosfera terrestre alterou significativamente a atmosfera e outros fatores abióticos do planeta, permitindo a proliferação de organismos aeróbicos, bem como a formação de uma camada de ozônio, a qual, em conjunto com o campo magnético terrestre, bloqueia radiação solar prejudicial, permitindo a vida no planeta. As propriedades físicas do planeta, bem como suas história geológica e órbita, permitiram que a vida persistisse durante este período. Acredita-se que a Terra poderá suportar vida durante pelo menos outros 500 milhões de anos.

A sua superfície exterior está dividida em vários segmentos rígidos, chamados placas tectônicas, que migram sobre a superfície terrestre ao longo de milhões de anos. Cerca de 71% da superfície da Terra está coberta por oceanos de água salgada, com o restante consistindo de continentes e ilhas, os quais contêm muitos lagos e outros corpos de água que contribuem para a hidrosfera. Não se conhece a existência de água no estado líquido em equilíbrio, necessária à manutenção da vida como a conhecemos, na superfície de qualquer outro planeta. Os polos geográficos da Terra encontram-se maioritariamente cobertos por mantos de gelo ou por banquisas. O interior da Terra permanece ativo, com um manto espesso e relativamente sólido, um núcleo externo líquido que gera um campo magnético, e um núcleo interno sólido, composto sobretudo por ferro.

A Terra interage com outros objetos no espaço, em particular com o Sol e a Lua. No presente, a Terra orbita o Sol uma vez por cada 366,26 rotações sobre o seu próprio eixo, o que equivale a 365,26 dias solares ou um ano sideral. O eixo de rotação da Terra possui uma inclinação de 23,4° em relação à perpendicular ao seu plano orbital, produzindo variações sazonais na superfície do planeta com período igual a um ano tropical (365,24 dias solares).A Lua é o único satélite natural conhecido da Terra, tendo começado a orbitá-la há 4,53 bilhões de anos. É responsável pelas marés, estabiliza a inclinação axial da Terra e abranda gradualmente a rotação do planeta. Entre aproximadamente 4,1 e 3,8 bilhões de anos atrás, durante o intenso bombardeio tardio, impactos de asteroides causaram mudanças significativas na superfície terrestre.

Os recursos minerais da Terra em conjunto com os produtos da biosfera, fornecem recursos que são utilizados para suportar uma população humana global. Estes habitantes da Terra estão agrupados em cerca de 200 estados soberanos, que interagem entre si por meio da diplomacia, viagens, comércio e ação militar. As culturas humanas desenvolveram várias crenças sobre o planeta, incluindo a sua personificação em uma deidade, a crença numa Terra plana, ou em que a Terra é o centro do universo, e uma perspectiva moderna do mundo como um ambiente integrado que requer proteção.
Abaixo deixo um vídeo para vocês acompanharem a história da Terra